A reinforcement learning approach to obstacle avoidance of mobile robots
نویسندگان
چکیده
One of the basic issues in navigation of autonomous mobile robots is the obstacle avoidance task that is commonly achieved using reactive control paradigm where a local mapping from perceived states to actions is acquired. A control strategy with learning capabilities in an unknown environment can be obtained using reinforcement learning where the learning agent is given only sparse reward information. This credit assignment problem includes both temporal and structural aspects. While the temporal credit assignment problem is solved using core elements of reinforcement learning agent, solution of the structural credit assignment problem requires an appropriate internal state space representation of the environment. In this paper a discrete coding of the input space using a neural network structure is presented as opposed to the commonly used continuous internal representation. This enables a faster and more efficient convergence of the reinforcement learning process.
منابع مشابه
Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملDirect Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کاملSoccer Robot Navigation in Grid Environments Based on Reinforcement Learning Algorithms
Autonomous mobile robots have been extensively studied not only as an element of industrial and home automation, but also as a test bed in Robocup competitions to academically establish the achievement of artificial intelligence. One of the essential and critical research areas in autonomous robotics is the learning ability which supports robots to autonomously navigate and adapt to a given env...
متن کاملOptimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملMobile robots exploration through cnn-based reinforcement learning
Exploration in an unknown environment is an elemental application for mobile robots. In this paper, we outlined a reinforcement learning method aiming for solving the exploration problem in a corridor environment. The learning model took the depth image from an RGB-D sensor as the only input. The feature representation of the depth image was extracted through a pre-trained convolutional-neural-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002